\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER- III(OLD) EXAMINATION - SUMMER 2019

Subject Code: 130002
Date: 30/05/2019
Subject Name: Advanced Engineering Mathematics
Time: 02:30 PM TO 05:30 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) (i) Solve $3 e^{x}$ tany $d x+\left(1-e^{x}\right) \sec ^{2} y d y=0 \quad 03$
(ii) Solve $y^{\prime}-\left(1+3 x^{-1}\right) y=x+2 ; y(1)=e-1 \quad 04$
(b) Find the Power series solution of the differential equation $y^{\prime \prime}=y^{\prime}$. 07
Q. 2 (a) Using the method of separation of variables solve $u_{x x}=16 u_{y}$. 07
(b) Find the series solution of the differential equation by Frobenius method 07

$$
x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-y=0
$$

(b) (i) Solve $y^{\prime \prime}+4 y=8 \cos 2 x, y(0)=0, y^{\prime}(0)=2$
(ii) Solve $y^{\prime \prime}-4 y^{\prime}-12 y=7 e^{-7 x}$ by method of undetermined coefficients. 04
Q. 3 (a) Find the Fourier series for the function $f(x)=x^{2}+x,-\pi \leq x \leq \pi$. 07
(b) Find the Fourier series of the function

$$
f(x)=\left\{\begin{array}{cc}
-\pi, & 0<x<\pi \\
x-\pi, & \pi<x<2 \pi
\end{array}\right.
$$

OR

Q. 3 (a) Find the Fourif series with period 3 to represent $f(x)=2 x-x^{2}$ in the range 07 $(0,3)$.
(b) Find the havrange Fourier cosine series of the function $f(x)=c-x$ in interval $(0, \mathrm{c})$ with period 2 c .
Q. 4 (a) (i) Find the Laplace transform of $\mathrm{e}^{-\mathrm{t}}\left(4 \mathrm{t}^{3}+3 \cos 2 \mathrm{t}+2 \mathrm{e}^{-2 \mathrm{t}}\right) \mathrm{03}$
(ii) Prove that

$$
\begin{aligned}
& L(\sin a t)=\frac{a}{s^{2}+a^{2}} \text { and } L(\cos a t)=\frac{s}{s^{2}+a^{2}} \\
& \mathrm{~s}>0, \text { where } a \text { is a constant. }
\end{aligned}
$$

(b) Find the Inverse Laplace transform of
(1) $\frac{s+3}{\left(s^{2}+1\right)\left(s^{2}+9\right)}$
(2) $\frac{2 s+3}{s^{2}-2 s+5}$

OR
Q. 4 (a) (i) Find the Laplace transform of

$$
e^{-2 t} \int_{0}^{t} t \cos t d t
$$

(ii) Find the Inverse Laplace transform of

$$
\frac{1+e^{-\frac{\pi}{2} s}}{s^{2}+4}
$$

(b) Using Laplace transform solve the differential equation $\mathrm{y}^{\prime \prime}+6 \mathrm{y}=1, \mathrm{y}(0)=2$,
$y^{\prime}(0)=0$
Q. 5 (a) (i) Form Partial differential equation by eliminating the arbitrary function from the equation

$$
z=y^{2}+2 f\left(\frac{1}{x}+\log y\right)
$$

(ii) Define the following: (1) Beta function (2) Dirac's Delta Function
(b) Express the function as a Fourier Integral
$f(x)=\left\{\begin{array}{cc}1, & |x| \leq 1 \\ 0, & |x|>1\end{array}\right.$

OR

Q. 5 (a) (i) Solve : $\mathrm{p}+\mathrm{q}=\mathrm{pq}$
(ii) Solve: $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$.
(b) Solve the following:
(i) $\frac{\partial^{3} z}{\partial x^{3}}-4 \frac{\partial^{3} z}{\partial x^{2} \partial y}+4 \frac{\partial^{3} z}{\partial x \partial y^{2}}=2 \sin (3 x+2 y)$
(ii) $\left(D-D^{\prime}-1\right)\left(D-D^{\prime}-2\right) z=e^{2 x-y}$

