Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III(OLD) EXAMINATION - SUMMER 2019 Date: 30/05/2019

Subject Code: 130002 **Subject Name: Advanced Engineering Mathematics**

Time: 02:30 PM TO 05:30 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 (a) (i) Solve
$$3e^x tany dx + (1 - e^x) sec^2 y dy = 0$$
 03

(ii) Solve y'-
$$(1+3 x^{-1})y = x+2$$
; $y(1) = e-1$

- **(b)** Find the Power series solution of the differential equation y'' = y'. **07**
- **Q.2** (a) Using the method of separation of variables solve $u_{xx} = 16 u_y$. 07
 - (b) Find the series solution of the differential equation by Frobenius method 07

$$x\frac{d^2y}{dx^2} + \frac{dy}{dx} - y = 0$$

- (b) (i) Solve $y'' + 4y = 8 \cos 2x$, y(0) = 0, y'(0) = 2(ii) Solve $y'' 4y' 12y = 7 e^{-7x}$ by method of undetermined coefficients. 03
- 04
- (a) Find the Fourier series for the function $f(x) = x^2 + x$, $-\pi \le x \le \pi$. **Q.3** 07
 - (b) Find the Fourier series of the function 07

$$f(x) = \begin{cases} -\pi, & 0 < x < \pi \\ x - \pi, & \pi < x < 2\pi \end{cases}$$

OR

- Find the Fourier series with period 3 to represent $f(x) = 2x x^2$ in the range **Q.3 07**
 - (b) Find the harrange Fourier cosine series of the function f(x) = c x in interval **07** (0, c) was period 2c.
- (i) Find the Laplace transform of e^{-t} (4t³ + 3cos2t + 2e^{-2t}) 03 **Q.4**
 - (ii) Prove that 04

$$L(sinat) = \frac{a}{s^2 + a^2}$$
 and $L(cosat) = \frac{s}{s^2 + a^2}$

s > 0, where α is a constant.

(b)

Find the Inverse Laplace transform of
(1)
$$\frac{s+3}{(s^2+1)(s^2+9)}$$
 (2) $\frac{2s+3}{s^2-2s+5}$

OR

(a) (i) Find the Laplace transform of

$$e^{-2t} \int_0^t t \cos t \, dt$$

(ii) Find the Inverse Laplace transform of

$$\frac{1+e^{-\frac{n}{2}s}}{s^2+4}$$

07

03

04

04

- (b) Using Laplace transform solve the differential equation y'' + 6y = 1, y(0) = 2, y'(0) = 0
- Q.5 (a) (i) Form Partial differential equation by eliminating the arbitrary function from the equation 03

$$z = y^2 + 2f\left(\frac{1}{x} + logy\right)$$

- (ii) Define the following: (1) Beta function (2) Dirac's Delta Function 04
- (b) Express the function as a Fourier Integral $f(x) = \begin{cases} 1, & |x| \le 1 \\ 0, & [x] > 1 \end{cases}$

OR

- Q.5 (a) (i) Solve: p + q = pq (ii) Solve: $x (y^2 z^2) p + y (z^2 x^2) q = z(x^2 y^2)$. 04 (b) Solve the following: 07
 - Solve the following: (i) $\frac{\partial^3 z}{\partial x^3} - 4 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial x \partial y^2} = 2\sin(3x + 2y)$
 - (ii) $(D D' 1) (D D' 2) z = e^{2x y}$

daninaled from Collins of the Collin